

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Cornice 1.2.1 documentation

Cornice: A REST framework for Pyramid

Cornice provides helpers to build & document REST-ish Web Services
with Pyramid, with decent default behaviors. It takes care of following the
HTTP specification in an automated way where possible.

We designed and implemented cornice in a really simple way, so
it is easy to use and you can get started in a matter of minutes.

Show me some code!

A full Cornice WGSI application looks like this (this example is taken from
the demoapp project [https://github.com/mozilla-services/demoapp]):

from collections import defaultdict

from pyramid.exceptions import Forbidden
from pyramid.security import authenticated_userid, effective_principals
from pyramid.view import view_config

from cornice import Service

info_desc = """\
This service is useful to get and set data for a user.
"""

user_info = Service(name='users', path='/{username}/info',
 description=info_desc)

_USERS = defaultdict(dict)

@user_info.get()
def get_info(request):
 """Returns the public information about a **user**.

 If the user does not exists, returns an empty dataset.
 """
 username = request.matchdict['username']
 return _USERS[username]

@user_info.post()
def set_info(request):
 """Set the public information for a **user**.

 You have to be that user, and *authenticated*.

 Returns *True* or *False*.
 """
 username = authenticated_userid(request)
 if request.matchdict["username"] != username:
 raise Forbidden()
 _USERS[username] = request.json_body
 return {'success': True}

@view_config(route_name="whoami", permission="authenticated", renderer="json")
def whoami(request):
 """View returning the authenticated user's credentials."""
 username = authenticated_userid(request)
 principals = effective_principals(request)
 return {"username": username, "principals": principals}

What Cornice will do for you here is:

	automatically raise a 405 if a DELETE or a PUT is called on
/{username}/info

	automatically generate your doc via a Sphinx directive.

	provide a validation framework that will return a nice JSON structure
in Bad Request 400 responses explaining what’s wrong.

	provide an acceptable Content-Type whenever you send an HTTP “Accept”
header
to it, resulting in a 406 Not Acceptable with the list of acceptable ones
if it can’t answer.

Please follow up with Exhaustive list of the validations provided by Cornice to get the picture.

Documentation content

	QuickStart for people in a hurry

	Full tutorial
	Design

	Setting up the development environment

	Defining the services

	Generating the documentation

	The Client

	How to configure cornice

	Defining resources
	validators and filters

	Registered routes

	Validation features
	Disabling or adding filters/validators

	Dealing with errors

	Validators

	Media type validation

	Managing ACLs

	Filters

	Built-in validators & filters
	Built-in filters

	Built-in validators

	Route factory support

	Sphinx integration
	Activate the extension

	The service directive

	Full example

	Testing
	Running tests

	Testing cornice services

	Exhaustive list of the validations provided by Cornice
	Errors

	Method not allowed

	Authorization

	Content negotiation

	Request media type

	Warning when returning JSON lists

	Example documentation
	Service service at /service

	Service2 service at /service2

	Service3 service at /service3

	Service4 service at /service4

	Filtered service at /filtered

	Service5 service at /service5

	Service6 service at /service6

	Service7 service at /service7

	Cornice API

	Cornice internals
	The Service class

	Registering the definitions into the pyramid routing system

	SPORE support

	Frequently Asked Questions (FAQ)
	Cornice registers exception handlers, how do I deal with it?

Contribution & Feedback

Cornice is a project initiated at Mozilla Services, where we build Web
Services for features like Firefox Sync. All of what we do is built with open
source, and this is one brick of our stack.

We welcome Contributors and Feedback!

	Developers Mailing List: https://mail.mozilla.org/listinfo/services-dev

	Repository: https://github.com/mozilla-services/cornice

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

QuickStart for people in a hurry

You are in a hurry, so we’ll assume you are familiar with Pyramid, Paster, and
Pip ;)

To use Cornice, install it:

$ pip install cornice

That’ll give you a Paster template to use:

$ pcreate -t cornice project
...

The template creates a working Cornice application.

If you want to add cornice support to an already existing project, you’ll need
to include cornice in your project includeme:

config.include("cornice")

You can then start poking at the views.py file that
has been created.

For example, let’s define a service where you can GET and POST a value
at /values/{value}, where value is an ascii value representing the
name of the value.

The views module can look like this:

from cornice import Service

values = Service(name='foo', path='/values/{value}',
 description="Cornice Demo")

_VALUES = {}

@values.get()
def get_value(request):
 """Returns the value.
 """
 key = request.matchdict['value']
 return _VALUES.get(key)

@values.post()
def set_value(request):
 """Set the value.

 Returns *True* or *False*.
 """
 key = request.matchdict['value']
 try:
 # json_body is JSON-decoded variant of the request body
 _VALUES[key] = request.json_body
 except ValueError:
 return False
 return True

Note

By default, Cornice uses a Json renderer.

Run your Cornice application with:

$ pserve project.ini --reload

Set a key-value using Curl:

$ curl -X POST http://localhost:6543/values/foo -d '{"a": 1}'

Check out what is stored in a foo values, open http://localhost:6543/values/foo

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Full tutorial

Let’s create a full working application with Cornice. We want to
create a light messaging service.

You can find its whole source code at https://github.com/mozilla-services/cornice/blob/master/examples/messaging

Features:

	users can register to the service

	users can list all registered users

	users can send messages

	users can retrieve the latest messages

	messages have three fields: sender, content, color (red or black)

	adding a message is done through authentication

Limitations:

	there’s a single channel for all messages.

	if a user with the same name is already registered,
he cannot register.

	all messages and users are kept in memory.

Design

The application provides two services:

	users, at /users: where you can list all users or register a new one

	messages, at /: where you can read the messages or add new ones

On the server, the data is kept in memory.

We’ll provide a single CLI client in Python, using Curses.

Setting up the development environment

To create this application, we’ll use Python 2.7. Make sure you
have it on your system, then install virtualenv (see
http://pypi.python.org/pypi/virtualenv).

Create a new directory and a virtualenv in it:

$ mkdir messaging
$ cd messaging
$ virtualenv --no-site-packages .

Once you have it, install Cornice in it with Pip:

$ bin/pip install cornice

Cornice provides a Paster Template you can use to create a new
application:

$ bin/pcreate -t cornice messaging
Creating directory <...path ...>/messaging
 Recursing into +package+
 Creating <...path ...>/messaging/messaging/
 Copying __init__.py_tmpl to <...path ...>/messaging/messaging/__init__.py
 Copying views.py_tmpl to <...path ...>/messaging/messaging/views.py
 Copying +package+.ini_tmpl to <...path ...>/messaging/messaging.ini
 Copying README.rst_tmpl to <...path ...>/messaging/README.rst
 Copying setup.py_tmpl to <...path ...>/messaging/setup.py

===
Tutorials: http://docs.pylonsproject.org/projects/pyramid_tutorials
Documentation: http://docs.pylonsproject.org/projects/pyramid

Twitter (tips & updates): http://twitter.com/pylons
Mailing List: http://groups.google.com/group/pylons-discuss

Welcome to Pyramid. Sorry for the convenience.
===

Once your application is generated, go there and call develop against it:

$ cd messaging
$../bin/python setup.py develop
...

The application can now be launched via embedded Pyramid pserve, it provides a default “Hello”
service check:

$../bin/pserve messaging.ini
Starting server in PID 7618.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

Once the application is running, visit http://127.0.0.1:6543 in your browser and make sure you get:

{'Hello': 'World'}

You should also get the same results calling the URL via Curl:

$ curl -i http://0.0.0.0:6543/

This will result:

HTTP/1.1 200 OK
Content-Length: 18
Content-Type: application/json; charset=UTF-8
Date: Tue, 12 May 2015 13:23:32 GMT
Server: waitress

{"Hello": "World"}

Defining the services

Let’s open the file in messaging/views.py, it contains all the Services:

from cornice import Service

hello = Service(name='hello', path='/', description="Simplest app")

@hello.get()
def get_info(request):
 """Returns Hello in JSON."""
 return {'Hello': 'World'}

Users management

We’re going to get rid of the Hello service, and change this file in order
to add our first service - the users management

from cornice import Service

_USERS = {}
users = Service(name='users', path='/users', description="User registration")

@users.get(validators=valid_token)
def get_users(request):
 """Returns a list of all users."""
 return {'users': _USERS.keys()}

@users.post(validators=unique)
def create_user(request):
 """Adds a new user."""
 user = request.validated['user']
 _USERS[user['name']] = user['token']
 return {'token': '%s-%s' % (user['name'], user['token'])}

@users.delete(validators=valid_token)
def del_user(request):
 """Removes the user."""
 name = request.validated['user']
 del _USERS[name]
 return {'Goodbye': name}

What we have here is 3 methods on /users:

	GET: returns the list of users names – the keys of _USERS

	POST: adds a new user and returns a unique token

	DELETE: removes the user.

Remarks:

	POST uses the unique validator to make sure that the user
name is not already taken. That validator is also in charge of
generating a unique token associated with the user.

	GET users the valid_token to verify that a X-Messaging-Token
header is provided in the request, with a valid token. That also identifies
the user.

	DELETE also identifies the user then removes it.

Validators are filling the request.validated mapping, the service can
then use.

Here’s their code:

import os
import binascii
import json

from webob import Response, exc
from cornice import Service

users = Service(name='users', path='/users', description="Users")
_USERS = {}

#
Helpers
#
def _create_token():
 return binascii.b2a_hex(os.urandom(20))

class _401(exc.HTTPError):
 def __init__(self, msg='Unauthorized'):
 body = {'status': 401, 'message': msg}
 Response.__init__(self, json.dumps(body))
 self.status = 401
 self.content_type = 'application/json'

def valid_token(request):
 header = 'X-Messaging-Token'
 htoken = request.headers.get(header)
 if htoken is None:
 raise _401()
 try:
 user, token = htoken.split('-', 1)
 except ValueError:
 raise _401()

 valid = user in _USERS and _USERS[user] == token
 if not valid:
 raise _401()

 request.validated['user'] = user

def unique(request):
 name = request.body
 if name in _USERS:
 request.errors.add('url', 'name', 'This user exists!')
 else:
 user = {'name': name, 'token': _create_token()}
 request.validated['user'] = user

#
Services - User Management
#
@users.get(validators=valid_token)
def get_users(request):
 """Returns a list of all users."""
 return {'users': _USERS.keys()}

@users.post(validators=unique)
def create_user(request):
 """Adds a new user."""
 user = request.validated['user']
 _USERS[user['name']] = user['token']
 return {'token': '%s-%s' % (user['name'], user['token'])}

@users.delete(validators=valid_token)
def del_user(request):
 """Removes the user."""
 name = request.validated['user']
 del _USERS[name]
 return {'Goodbye': name}

When the validator finds errors, it adds them to the request.errors
mapping, and that will return a 400 with the errors.

Let’s try our application so far with CURL:

$ curl http://localhost:6543/users
{"status": 401, "message": "Unauthorized"}

$ curl -X POST http://localhost:6543/users -d 'tarek'
{"token": "tarek-a15fa2ea620aac8aad3e1b97a64200ed77dc7524"}

$ curl http://localhost:6543/users -H "X-Messaging-Token:tarek-a15fa2ea620aac8aad3e1b97a64200ed77dc7524"
{"users": ["tarek"]}

$ curl -X DELETE http://localhost:6543/users -H "X-Messaging-Token:tarek-a15fa2ea620aac8aad3e1b97a64200ed77dc7524"
{"Goodbye": "tarek"}

Messages management

Now that we have users, let’s post and get messages. This is done via two very
simple functions we’re adding in the views.py file:

messages = Service(name='messages', path='/', description="Messages")

_MESSAGES = []

@messages.get()
def get_messages(request):
 """Returns the 5 latest messages"""
 return _MESSAGES[:5]

@messages.post(validators=(valid_token, valid_message))
def post_message(request):
 """Adds a message"""
 _MESSAGES.insert(0, request.validated['message'])
 return {'status': 'added'}

The first one simply returns the five first messages in a list, and the second
one inserts a new message in the beginning of the list.

The POST uses two validators:

	valid_token(): the function we used previously that makes sure the
user is registered

	valid_message(): a function that looks at the message provided in the
POST body, and puts it in the validated dict.

Here’s the valid_message() function:

def valid_message(request):
 try:
 message = json.loads(request.body)
 except ValueError:
 request.errors.add('body', 'message', 'Not valid JSON')
 return

 # make sure we have the fields we want
 if 'text' not in message:
 request.errors.add('body', 'text', 'Missing text')
 return

 if 'color' in message and message['color'] not in ('red', 'black'):
 request.errors.add('body', 'color', 'only red and black supported')
 elif 'color' not in message:
 message['color'] = 'black'

 message['user'] = request.validated['user']
 request.validated['message'] = message

This function extracts the json body, then checks that it contains a text key
at least. It adds a color or use the one that was provided,
and reuse the user name provided by the previous validator
with the token control.

Generating the documentation

Now that we have a nifty web application, let’s add some doc.

Go back to the root of your project and install Sphinx:

$ bin/pip install Sphinx

Then create a Sphinx structure with sphinx-quickstart:

$ mkdir docs
$ bin/sphinx-quickstart
Welcome to the Sphinx 1.0.7 quickstart utility.

..

Enter the root path for documentation.
> Root path for the documentation [.]: docs
...
> Separate source and build directories (y/N) [n]: y
...
> Project name: Messaging
> Author name(s): Tarek
...
> Project version: 1.0
...
> Create Makefile? (Y/n) [y]:
> Create Windows command file? (Y/n) [y]:

Once the initial structure is created, we need to declare the Cornice
extension, by editing the source/conf.py file. We want to change
extensions = [] into:

import cornice # makes sure cornice is available
extensions = ['cornice.ext.sphinxext']

The last step is to document your services by editing the
source/index.rst file like this:

Welcome to Messaging's documentation!
=====================================

.. services::
 :modules: messaging.views

The services directive is told to look at the services in the messaging
package. When the documentation is built, you will get a nice
output of all the services we’ve described earlier.

The Client

A simple client to use against our service can do three things:

	let the user register a name

	poll for the latest messages

	let the user send a message !

Without going into great details, there’s a Python CLI against messaging
that uses Curses.

See https://github.com/mozilla-services/cornice/blob/master/examples/messaging/messaging/client.py

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

How to configure cornice

In addition to be configurable when defining the services, it’s possible to
change some behavior of Cornice via a configuration file.

Here are some of the options you can tweak:

	Setting name (default value)
	What does it do?

	route_prefix (``)
	Sets a prefix for all your routes. For
instance, if you want to prefix all your
URIs by /1.0/, you can set it up here.

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Defining resources

Cornice is also able to handle rest “resources” for you. You can declare
a class with some put, post, get etc. methods (the HTTP verbs) and they will be
registered as handlers for the appropriate methods / services.

Here is how you can register a resource:

from cornice.resource import resource, view

_USERS = {1: {'name': 'gawel'}, 2: {'name': 'tarek'}}

@resource(collection_path='/users', path='/users/{id}')
class User(object):

 def __init__(self, request):
 self.request = request

 def collection_get(self):
 return {'users': _USERS.keys()}

 @view(renderer='json')
 def get(self):
 return _USERS.get(int(self.request.matchdict['id']))

 @view(renderer='json', accept='text/json')
 def collection_post(self):
 print(self.request.json_body)
 _USERS[len(_USERS) + 1] = self.request.json_body
 return True

Here is an example of how to define cornice resources in an imperative way:

from cornice import resource

class User(object):

 def __init__(self, request):
 self.request = request

 def collection_get(self):
 return {'users': _USERS.keys()}

 def get(self):
 return _USERS.get(int(self.request.matchdict['id']))

resource.add_view(User.get, renderer='json')
user_resource = resource.add_resource(User, collection_path='/users', path='/users/{id}')

def includeme(config):
 config.add_cornice_resource(user_resource)
 # or
 config.scan("PATH_TO_THIS_MODULE")

As you can see, you can define methods for the collection (it will use the
path argument of the class decorator. When defining collection_* methods, the
path defined in the collection_path will be used.

validators and filters

You also can register validators and filters that are defined in your
@resource decorated class, like this:

@resource(path='/users/{id}')
class User(object):

 def __init__(self, request):
 self.request = request

 @view(validators=('validate_req',))
 def get(self):
 # return the list of users

 def validate_req(self, request):
 # validate the request

Registered routes

Cornice uses a default convention for the names of the routes it registers.

When defining resources, the pattern used is collection_<service_name> (it
prepends collection_ to the service name) for the collection service.

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Validation features

Cornice provides a way to to control the request before it’s passed to the
code. A validator is a simple callable that gets the request object and fills
request.errors in case the request isn’t valid.

Validators can also convert values and saves them so they can be reused
by the code. This is done by filling the request.validated dictionary.

Once the request had been sent to the view, you can filter the results using so
called filters. This document describe both concepts, and how to deal with
them.

Disabling or adding filters/validators

Some validators and filters are activated by default, for all the services. In
case you want to disable them, or if you

You can register a filter for all the services by tweaking the DEFAULT_FILTER
parameter:

from cornice.validators import DEFAULT_FILTERS

def includeme(config):
 DEFAULT_FILTERS.append(your_callable)

(this also works for validators)

You also can add or remove filters and validators for a particular service. To
do that, you need to define its default_validators and default_filters
class parameters.

Dealing with errors

When validating inputs using the different validation mechanisms (described in
this document), Cornice can return errors. In case it returns errors, it will
do so in JSON by default.

The default returned JSON object is a dictionary of the following form:

{
 'status': 'error',
 'errors': errors
}

With errors being a JSON dictionary with the keys “location”, “name” and
“description”.

	location is the location of the error. It can be “querystring”, “header”
or “body”

	name is the eventual name of the value that caused problems

	description is a description of the problem encountered.

You can override the default JSON error handler for a view with your own
callable. The following function, for instance, returns the error response
with an XML document as its payload:

def xml_error(errors):
 lines = ['<errors>']
 for error in errors:
 lines.append('<error>'
 '<location>%(location)s</location>'
 '<type>%(name)s</type>'
 '<message>%(description)s</message>'
 '</error>' % error)
 lines.append('</errors>')
 return HTTPBadRequest(body=''.join(lines),
 content_type='application/xml')

Configure your views by passing your handler as error_handler:

@service.post(validators=my_validator, error_handler=xml_error)
def post(request):
 return {'OK': 1}

Validators

Schema validation

You can do schema validation using either libraries or custom code. However,
Cornice integrates better when using Colander for instance, and will be able
to generate the documentation and describe the variables needed if you use it.

Using Colander

Colander (http://docs.pylonsproject.org/projects/colander/en/latest/) is a
validation framework from the Pylons project that can be used with Cornice’s
validation hook to control a request and deserialize its content into
objects.

To describe a schema, using Colander and Cornice, here is how you can do:

from cornice import Service
from cornice.schemas import CorniceSchema
from colander import MappingSchema, SchemaNode, String, drop

foobar = Service(name="foobar", path="/foobar")

class FooBarSchema(MappingSchema):
 # foo and bar are required in the body (json), baz is optional
 # yeah is required, but in the querystring.
 foo = SchemaNode(String(), location="body", type='str')
 bar = SchemaNode(String(), location="body", type='str')
 baz = SchemaNode(String(), location="body", type='str', missing=drop)
 yeah = SchemaNode(String(), location="querystring", type='str')

@foobar.post(schema=FooBarSchema)
def foobar_post(request):
 return {"test": "succeeded"}

You can even use Schema-Inheritance as introduced by Colander 0.9.9.

If you want to access the request within the schema nodes during validation,
you can use the deferred feature of Colander [http://docs.pylonsproject.org/projects/colander/en/latest/binding.html],
since Cornice binds the schema with the current request:

from colander import deferred

@deferred
def deferred_validator(node, kw):
 request = kw['request']
 if request['x-foo'] == 'version_a':
 return OneOf(['a', 'b'])
 else:
 return OneOf(['c', 'd'])

class FooBarSchema(MappingSchema):
 choice = SchemaNode(String(), validator=deferred_validator)

Note

Since binding on request has a cost, it can be disabled
by specifying bind_request as False:

@property
def schema(self):
 return CorniceSchema.from_colander(FooBarSchema(),
 bind_request=False)

If you want the schema to be dynamic, i.e. you want to choose which one to use
per request, you can define it as a property on your class and it will be used
instead. For example:

@property
def schema(self):
 if self.request.method == 'POST':
 schema = foo_schema
 elif self.request.method == 'PUT':
 schema = bar_schema
 schema = CorniceSchema.from_colander(schema)
 # Custom additional context
 schema = schema.bind(context=self.context)
 return schema

Cornice provides built-in support for JSON and HTML forms
(application/x-www-form-urlencoded) input validation using Colander. If
you need to validate other input formats, such as XML, you can provide callable
objects taking a request argument and returning a Python data structure
that Colander can understand:

def dummy_deserializer(request):
 return parse_my_input_format(request.body)

You can then instruct a specific view to use with the deserializer
parameter:

@foobar.post(schema=FooBarSchema, deserializer=dummy_deserializer)
def foobar_post(request):
 return {"test": "succeeded"}

If you’d like to configure deserialization globally, you can use the
add_cornice_deserializer configuration directive in your app configuration
code to tell Cornice which deserializer to use for a given content
type:

config = Configurator(settings={})
...
config.add_cornice_deserializer('text/dummy', dummy_deserializer)

With this configuration, when a request comes with a Content-Type header set to
text/dummy, Cornice will call dummy_deserializer on the request
before passing the result to Colander.

View-specific deserializers have priority over global content-type
deserializers.

To enable localization of Colander error messages, you must set
available_languages [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/i18n.html#detecting-available-languages] in your settings.
You may also set pyramid.default_locale_name [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html#default-locale-name-setting].

Using formencode

FormEncode (http://www.formencode.org/en/latest/index.html) is yet another
validation system that can be used with Cornice.

For example, if you want to make sure the optional query option max
is an integer, and convert it, you can use FormEncode in a Cornice validator
like this:

from cornice import Service
from formencode import validators

foo = Service(name='foo', path='/foo')
validator = validators.Int()

def validate(request):
 try:
 request.validated['max'] = validator.to_python(request.GET['max'])
 except formencode.Invalid, e:
 request.errors.add('url', 'max', e.message)

@foo.get(validators=(validate,))
def get_value(request):
 """Returns the value.
 """
 return 'Hello'

Validation using custom callables

Let’s take an example: we want to make sure the incoming request has an
X-Verified header. If not, we want the server to return a 400:

from cornice import Service

foo = Service(name='foo', path='/foo')

def has_paid(request):
 if not 'X-Verified' in request.headers:
 request.errors.add('header', 'X-Verified', 'You need to provide a token')

@foo.get(validators=has_paid)
def get_value(request):
 """Returns the value.
 """
 return 'Hello'

Notice that you can chain the validators by passing a sequence
to the validators option.

When using validation, Cornice will try to extract information coming from
the validation functions and use them in the generated documentation.
Refer to Sphinx integration for more information about automatic generated documentation.

Changing the status code from validators

You also can change the status code returned from your validators. Here is an
example of this:

def user_exists(request):
 if not request.POST['userid'] in userids:
 request.errors.add('body', 'userid', 'The user id does not exist')
 request.errors.status = 404

Doing validation and filtering at class level

If you want to use class methods to do validation, you can do so by passing the
klass parameter to the hook_view or @method decorators, plus a string
representing the name of the method you want to invoke on validation.

Take care, though, because this only works if the class you are using has an
__init__ method which takes a request as the first argument.

This means something like this:

class MyClass(object):
 def __init__(self, request):
 self.request = request

 def validate_it(request):
 # pseudo-code validation logic
 if whatever is wrong:
 request.errors.add('something')

@service.get(klass=MyClass, validators=('validate_it',))
def view(request):
 return "ok"

Media type validation

There are two flavors of media/content type validations Cornice can apply to services:

	Content negotiation checks if Cornice is able to respond with an appropriate
response body content type requested by the client sending an Accept header.
Otherwise it will croak with a 406 Not Acceptable.

	Request media type validation will match the Content-Type request header
designating the request body content type against a list of allowed content types.
When failing on that, it will croak with a 415 Unsupported Media Type.

Content negotiation

Validate the Accept header in http requests
against a defined or computed list of internet media types.
Otherwise, signal 406 Not Acceptable to the client.

Basics

By passing the accept argument to the service definition decorator,
we define the media types we can generate http response bodies for:

@service.get(accept="text/html")
def foo(request):
 return 'Foo'

When doing this, Cornice automatically deals with egress content negotiation for you.

If services don’t render one of the appropriate response body formats asked
for by the requests HTTP Accept header, Cornice will respond with a http
status of 406 Not Acceptable.

The accept argument can either be a string or a list of accepted values
made of internet media type(s) or a callable returning the same.

Using callables

When a callable is specified, it is called before the
request is passed to the destination function, with the request object as
an argument.

The callable obtains the request object and returns a list or a single scalar
value of accepted media types:

def _accept(request):
 # interact with request if needed
 return ("text/xml", "text/json")

@service.get(accept=_accept)
def foo(request):
 return 'Foo'

See also

https://developer.mozilla.org/en-US/docs/HTTP/Content_negotiation

Error responses

When requests are rejected, an appropriate error response
is sent to the client using the configured error_handler.
To give the service consumer a hint about the valid internet
media types to use for the Accept header,
the error response contains a list of allowed types.

When using the default json error_handler, the response might look like this:

{
 'status': 'error',
 'errors': [
 {
 'location': 'header',
 'name': 'Accept',
 'description': 'Accept header should be one of ["text/xml", "text/json"]'
 }
]
}

Request media type

Validate the Content-Type header in http requests
against a defined or computed list of internet media types.
Otherwise, signal 415 Unsupported Media Type to the client.

Basics

By passing the content_type argument to the service definition decorator,
we define the media types we accept as http request bodies:

@service.post(content_type="application/json")
def foo(request):
 return 'Foo'

All requests sending a different internet media type
using the HTTP Content-Type header will be rejected
with a http status of 415 Unsupported Media Type.

The content_type argument can either be a string or a list of accepted values
made of internet media type(s) or a callable returning the same.

Using callables

When a callable is specified, it is called before the
request is passed to the destination function, with the request object as
an argument.

The callable obtains the request object and returns a list or a single scalar
value of accepted media types:

def _content_type(request):
 # interact with request if needed
 return ("text/xml", "application/json")

@service.post(content_type=_content_type)
def foo(request):
 return 'Foo'

The match is done against the plain internet media type string without
additional parameters like charset=utf-8 or the like.

See also

WebOb documentation: Return the content type, but leaving off any parameters [http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.content_type]

Error responses

When requests are rejected, an appropriate error response
is sent to the client using the configured error_handler.
To give the service consumer a hint about the valid internet
media types to use for the Content-Type header,
the error response contains a list of allowed types.

When using the default json error_handler, the response might look like this:

{
 'status': 'error',
 'errors': [
 {
 'location': 'header',
 'name': 'Content-Type',
 'description': 'Content-Type header should be one of ["text/xml", "application/json"]'
 }
]
}

Managing ACLs

You can also specify a way to deal with ACLs: pass in a function that takes
a request and returns an ACL, and that ACL will be applied to all views
in the service:

foo = Service(name='foo', path='/foo', acl=_check_acls)

Filters

Cornice can also filter the response returned by your views. This can be
useful if you want to add some behaviour once a response has been issued.

Here is how to define a validator for a service:

foo = Service(name='foo', path='/foo', filters=your_callable)

You can just add the filter for a specific method:

@foo.get(filters=your_callable)
def foo_get(request):
 """some description of the validator for documentation reasons"""
 pass

In case you would like to register a filter for all the services but one, you
can use the exclude parameter. It works either on services or on methods:

@foo.get(exclude=your_callable)

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Built-in validators & filters

Here is a list of all the cornice built-in validators / filters. Cornice wants
to provide some tools so you don’t mess up when making web services, so some of
them are activated by default.

If you need to add custom decorators to the list of default ones, or want to
disable some of them, please refer to Validation features.

Built-in filters

JSON XSRF filter

The cornice.validators.filter_json_xsrf filter checks out the views response,
looking for json objects returning lists.

It happens that json lists are subject to cross request forgery attacks (XSRF)
when returning lists (see http://wiki.pylonshq.com/display/pylonsfaq/Warnings),
so cornice will drop a warning in case you’re doing so.

Built-in validators

Schema validation

Cornice is able to do schema validation for you. It is able to use colander
schemas with some annotation in them. Here is an example of a validation
schema, taken from the cornice test suite:

class FooBarSchema(MappingSchema):
 # foo and bar are required, baz is optional
 foo = SchemaNode(String(), type='str')
 bar = SchemaNode(String(), type='str', validator=validate_bar)
 baz = SchemaNode(String(), type='str', missing=None)
 yeah = SchemaNode(String(), location="querystring", type='str')
 ipsum = SchemaNode(Integer(), type='int', missing=1,
 validator=Range(0, 3))
 integers = Integers(location="body", type='list', missing=())

foobar = Service(name="foobar", path="/foobar")

@foobar.post(schema=FooBarSchema)
def foobar_post(request):
 return {"test": "succeeded"}

We are passing the schema as another argument (than the validators one)
so that cornice can do the heavy lifting for you. Another interesting thing to
notice is that we are passing a location argument which specifies where
cornice should look in the request for this argument.

Route factory support

When defining a service or a resource, you can provide a route factory [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#route-factories],
just like when defining a pyramid route. Cornice will then pass its result
into the __init__ of your service.

For example:

@resource(path='/users', factory=user_factory)
class User(object):

 def __init__(self, context, request):
 self.request = request
 self.user = context

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Sphinx integration

Maintaining documentation while the code is evolving is painful.
Avoiding information duplication is also quite a challenge.

Cornice tries to reduce a bit the pain by providing a Sphinx
(http://sphinx.pocoo.org/) directive that scans the web
services and build the documentation using:

	the description provided when a Service instance is created

	the docstrings of all functions involved in creating the response:
the web services function itself and the validators.

The assumption made is that maintaining those docstrings while
working on the code is easier.

Activate the extension

To activate Cornice’s directive, you must include it in your
Sphinx project conf.py file:

import cornice

sys.path.insert(0, os.path.abspath(cornice.__file__))
extensions = ['cornice.ext.sphinxext']

Of course this may vary if you have other extensions.

The service directive

Cornice provides a cornice-autodoc directive you can use to
inject the Web Services documentation into Sphinx.

The directive has the following options:

	modules: a comma-separated list of the python modules that contain
Cornice Web services. Cornice will scan it and look for the services.

	app: set the path to you app needed for imperative registering services.

	services: a comma-separated list of services, as you named them when
using the cornice Service directive. optional

	service: if you have only one name, then you can use service rather
than services. optional

	ignore: a comma separated list of services names to ignore. optional

module or app are mandatory

You can use info fields (see
Info field lists [http://sphinx.pocoo.org/domains.html#info-field-lists])
in your functions, methods and validators.

Note

This directive used to be named “services” and had been renamed for
something more consistant with the Sphinx ecosystem.

Full example

Let’s say you have a quote project with a single service where you
can POST and GET a quote.

The service makes sure the quote starts with a majuscule and ends with
a dot !

Here’s the full declarative app:

from cornice import Service
from pyramid.config import Configurator
import string

desc = """\
Service that maintains a quote.
"""

quote = Service(name='quote', path='/quote', description=desc)

def check_quote(request):
 """Makes sure the quote starts with a majuscule and ends with a dot"""
 quote = request.body
 if quote[0] not in string.ascii_uppercase:
 request.errors.add('body', 'quote', 'Does not start with a majuscule')

 if quote[-1] not in ('.', '?', '!'):
 request.errors.add('body', 'quote', 'Does not end properly')

 if len(request.errors) == 0:
 request.validated['quote'] = quote

_quote = {}
_quote['default'] = "Not set, yet !"

@quote.get()
def get_quote(request):
 """Returns the quote"""
 return _quote['default']

@quote.post(validators=check_quote)
def post_quote(request):
 """Update the quote"""
 _quote['default'] = request.validated['quote']

def main(global_config, **settings):
 config = Configurator(settings={})
 config.include("cornice")
 config.scan("coolapp")
 return config.make_wsgi_app()

if __name__ == '__main__':
 from wsgiref.simple_server import make_server
 app = main({})
 httpd = make_server('', 6543, app)
 print("Listening on port 6543....")
 httpd.serve_forever()

And here’s the full Sphinx doc example:

Welcome to coolapp's documentation!
===================================

My **Cool** app provides a way to send cool quotes to the server !

.. cornice-autodoc::
 :modules: coolapp
 :service: quote

Here’s the full imperative app:

from cornice import Service
from pyramid.config import Configurator
import string

def check_quote(request):
 """Makes sure the quote starts with a majuscule and ends with a dot"""
 quote = request.body
 if quote[0] not in string.ascii_uppercase:
 request.errors.add('body', 'quote', 'Does not start with a majuscule')

 if quote[-1] not in ('.', '?', '!'):
 request.errors.add('body', 'quote', 'Does not end properly')

 if len(request.errors) == 0:
 request.validated['quote'] = quote

_quote = {}
_quote['default'] = "Not set, yet !"

def get_quote(request):
 """Returns the quote"""
 return _quote['default']

def post_quote(request):
 """Update the quote"""
 _quote['default'] = request.validated['quote']

def main(global_config, **settings):
 config = Configurator(settings={})
 config.include("cornice")
 desc = "Service that maintains a quote."
 quote = Service(name='quote', path='/quote', description=desc)
 quote.add_view("GET", get_quote)
 quote.add_view("POST", post_quote, validators=check_quote)
 config.add_cornice_service(quote)
 return config.make_wsgi_app()

if __name__ == '__main__':
 from wsgiref.simple_server import make_server
 app = main({})
 httpd = make_server('', 6543, app)
 print("Listening on port 6543....")
 httpd.serve_forever()

Client calls:

$ curl -X POST http://localhost:6543/quote -d Hansolohat.
null
$ curl -X GET http://localhost:6543/quote
"Hansolohat."

And here’s the full Sphinx doc example:

Welcome to coolapp's documentation!
===================================

My **Cool** app provides a way to send cool quotes to the server !

.. cornice-autodoc::
 :app: coolapp
 :service: quote

The resulting doc is:

[image: _images/cornice.png]

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Testing

Running tests

To run all tests in all Python environments configured in tox.ini,
just setup tox and run it inside the toplevel project directory:

tox

To run a single test inside a specific Python environment, do e.g.:

tox -e py27 cornice/tests/test_validation.py:TestServiceDefinition.test_content_type_missing

or:

tox -e py27 cornice.tests.test_validation:TestServiceDefinition.test_content_type_missing

Testing cornice services

Testing is nice and useful. Some folks even said it helped saving kittens. And
childs. Here is how you can test your Cornice’s applications.

Let’s suppose you have this service definition:

from pyramid.config import Configurator

from cornice import Service
from cornice.tests.support import CatchErrors

service = Service(name="service", path="/service")

def has_payed(request):
 if not 'paid' in request.GET:
 request.errors.add('body', 'paid', 'You must pay!')

@service.get(validators=has_payed)
def get1(request):
 return {"test": "succeeded"}

def includeme(config):
 config.include("cornice")
 config.scan("absolute.path.to.this.service")

def main(global_config, **settings):
 config = Configurator(settings={})
 config.include(includeme)
 return CatchErrors(config.make_wsgi_app())

We have done three things here:

	setup a service, using the Service class and define our services with it

	register the app and cornice to pyramid in the includeme function

	define a main function to be used in tests

To test this service, we will use webtest, and the TestApp class:

from webtest import TestApp
import unittest

from yourapp import main

class TestYourApp(unittest.TestCase):

 def test_case(self):
 app = TestApp(main({}))
 app.get('/service', status=400)

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Exhaustive list of the validations provided by Cornice

As you may have noticed, Cornice does some validation for you. This document
aims at documenting all those behaviours so you are not surprised if Cornice
does it for you without noticing.

Errors

When validating contents, cornice will automatically throw a 400 error if the
data is invalid. Along with the 400 error, the body will contain a JSON dict
which can be parsed to know more about the problems encountered.

Method not allowed

In cornice, one path equals one service. If you call a path with the wrong
method, a 405 Method Not Allowed error will be thrown (and not a 404), like
specified in the HTTP specification.

Authorization

Authorization can be done using the acl parameter. If the authentication or
the authorization fails at this stage, a 401 or 403 error is returned,
depending on the cases.

Content negotiation

This relates to response body internet media types aka. egress content types.

Each method can specify a list of internet media types it can respond with.
Per default, text/html is assumed. In the case the client requests an
invalid media type via Accept header, cornice will return a
406 Not Acceptable with an error message containing the list of available
response content types for the particular URI and method.

Request media type

This relates to request body internet media types aka. ingress content types.

Each method can specify a list of internet media types it accepts as request
body format. Per default, any media type is allowed. In the case the client
sends a request with an invalid Content-Type header, cornice will return a
415 Unsupported Media Type with an error message containing the list of available
request content types for the particular URI and method.

Warning when returning JSON lists

JSON lists are subject to security threats, as defined
in this document [http://haacked.com/archive/2009/06/25/json-hijacking.aspx].
In case you return a javascript list, a warning will be thrown. It will not
however prevent you from returning the array.

This behaviour can be disabled if needed (it can be removed from the list of
default filters)

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Example documentation

This is an example of what you can get with the Cornice auto documentation
feature:

Below is the result of this directive:

.. services::
 :modules: cornice.tests.validationapp

Service service at /service

GET

Response: json

POST

The request body should be a JSON object.

Response: json

Service2 service at /service2

GET

Accepted content types:
	text/plain

Response: string

GET

Accepted content types:
	application/json

	text/json

Response: json

Service3 service at /service3

PUT

Accepted content types:
	<function <lambda> at 0x7f86e91106e0>

Response: json

GET

Accepted content types:
	<function <lambda> at 0x7f86e9110578>

Response: json

Service4 service at /service4

POST

Response: json

Filtered service at /filtered

POST

Response: json

GET

Response: json

Service5 service at /service5

PUT

Response: json

POST

Response: json

GET

Response: json

Service6 service at /service6

PUT

Response: json

POST

Response: json

Service7 service at /service7

PUT

Accepted content types:
	text/xml

	text/plain

Response: json

POST

Accepted content types:
	text/xml

Response: json

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Cornice API

This document describes the methods proposed by cornice. It is
automatically generated from the source code.

	
class cornice.service.Service(name, path, description=None, cors_policy=None, depth=1, **kw)

	Contains a service definition (in the definition attribute).

A service is composed of a path and many potential methods, associated
with context.

All the class attributes defined in this class or in children are
considered default values.

	Parameters:	
	name – The name of the service. Should be unique among all the services.

	path – The path the service is available at. Should also be unique.

	renderer – The renderer that should be used by this service. Default value is
‘simplejson’.

	description – The description of what the webservice does. This is primarily intended
for documentation purposes.

	validators – A list of callables to pass the request into before passing it to the
associated view.

	filters – A list of callables to pass the response into before returning it to
the client.

	accept – A list of Accept header values accepted for this service
(or method if overwritten when defining a method).
It can also be a callable, in which case the values will be
discovered at runtime. If a callable is passed, it should be able
to take the request as a first argument.

	content_type – A list of Content-Type header values accepted for this service
(or method if overwritten when defining a method).
It can also be a callable, in which case the values will be
discovered at runtime. If a callable is passed, it should be able
to take the request as a first argument.

	factory – A factory returning callables which return boolean values. The
callables take the request as their first argument and return boolean
values. This param is exclusive with the ‘acl’ one.

	acl – A callable defining the ACL (returns true or false, function of the
given request). Exclusive with the ‘factory’ option.

	permission – As for pyramid.config.Configurator.add_view.
Note: acl and permission can also be applied
to instance method decorators such as get() and put().

	klass – The class to use when resolving views (if they are not callables)

	error_handler – A callable which is used to render responses following validation
failures. Defaults to ‘json_error’.

	traverse – A traversal pattern that will be passed on route declaration and that
will be used as the traversal path.

There are also a number of parameters that are related to the support of
CORS (Cross Origin Resource Sharing). You can read the CORS specification
at http://www.w3.org/TR/cors/

	Parameters:	
	cors_enabled – To use if you especially want to disable CORS support for a particular
service / method.

	cors_origins – The list of origins for CORS. You can use wildcards here if needed,
e.g. (‘list’, ‘of’, ‘*.domain’).

	cors_headers – The list of headers supported for the services.

	cors_credentials – Should the client send credential information (False by default).

	cors_max_age – Indicates how long the results of a preflight request can be cached in
a preflight result cache.

	cors_expose_all_headers – If set to True, all the headers will be exposed and considered valid
ones (Default: True). If set to False, all the headers need be
explicitly mentioned with the cors_headers parameter.

	cors_policy – It may be easier to have an external object containing all the policy
information related to CORS, e.g:

>>> cors_policy = {'origins': ('*',), 'max_age': 42,
... 'credentials': True}

You can pass a dict here and all the values will be
unpacked and considered rather than the parameters starting by cors_
here.

See
http://readthedocs.org/docs/pyramid/en/1.0-branch/glossary.html#term-acl
for more information about ACLs.

Service cornice instances also have methods get(), post(),
put(), options() and delete() are decorators that can
be used to decorate views.

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

Cornice internals

Internally, Cornice doesn’t do a lot of magic. The logic is mainly split in two
different locations: the services.py module and the pyramid_hook.py module.

That’s important to understand what they are doing in order to add new features
or tweak the existing ones.

The Service class

The cornice.service.Service class is a container for all the definition
information for a particular service. That’s what you use when you use the
Cornice decorators for instance, by doing things like
@myservice.get(**kwargs). Under the hood, all the information you’re passing
to the service is stored in this class. Into other things you will find there:

	the name of the registered service.

	the path the service is available at.

	the description of the service, if any.

	the defined_methods for the current service. This is a list of strings. It
shouldn’t contain more than one time the same item.

That’s for the basic things. The last interesting part is what we call the
“definitions”. When you add a view to the service with the add_view method,
it populates the definitions list, like this:

self.definitions.append((method, view, args))

where method is the HTTP verb, view is the python callable and args are
the arguments that are registered with this definition. It doesn’t look this
important, but this last argument is actually the most important one. It is a
python dict containing the filters, validators, content types etc.

There is one thing I didn’t talk about yet: how we are getting the arguments
from the service class. There is a handy get_arguments method, which returns
the arguments from another list of given arguments. The goal is to fallback on
instance-level arguments or class-level arguments if no arguments are provided
at the add_view level. For instance, let’s say I have a default service which
renders to XML. I set its renderer in the class to “XML”.

When I register the information with add_view, renderer=’XML’ will be added
automatically in the args dict.

Registering the definitions into the pyramid routing system

Okay, so once you added the services definition using the Service class, you
might need to actually register the right routes into pyramid. The
pyramidhook module takes care of this for you.

What it does is that it checks all the services registered and call some
functions of the pyramid framework on your behalf.

What’s interesting here is that this mechanism is not really tied to pyramid.
for instance, we are doing the same thing to do the sphinx automatic
documentation generation: use the APIs that are exposed in the Service class
and do something from it.

To keep close to the flexibility of pyramid’s routing system, a traverse
argument can be provided on service creation. It will be passed to the route
declaration. This way you can combine URL Dispatch and traversal to build an
hybrid application.

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 1.2.1 documentation

SPORE support

Cornice has support for SPORE [https://github.com/SPORE/specifications].
SPORE is a way to describe your REST web services, as WSDL is for WS-*
services. This allows to ease the creation of generic SPORE clients, which are
able to consume any REST API with a SPORE endpoint.

Here is how you can let cornice describe your web service for you:

from cornice.ext.spore import generate_spore_description
from cornice.service import Service, get_services

spore = Service('spore', path='/spore', renderer='jsonp')
@spore.get()
def get_spore(request):
 services = get_services()
 return generate_spore_description(services, 'Service name', request.application_url, '1.0')

And you’ll get a definition of your service, in SPORE, available at /spore.

Of course, you can use it to do other things, like generating the file locally
and exporting it wherever it makes sense to you, etc.

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Cornice 1.2.1 documentation

Frequently Asked Questions (FAQ)

Here is a list of frequently asked questions related to Cornice.

Cornice registers exception handlers, how do I deal with it?

Cornice registers its own exception handlers so it’s able to behave the right
way in some edge cases (it’s mostly done for CORS support).

Sometimes, you will need to register your own exception handlers, and Cornice
might get on your way.

You can disable the exception handling by using the handle_exceptions
setting in your configuration file or in your main app:

config.add_settings(handle_exceptions=False)

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Cornice 1.2.1 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 cornice	

 	
 	
 cornice.service	

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Cornice 1.2.1 documentation

Index

 C
 | S

C

 	

 	cornice.service (module)

S

 	

 	Service (class in cornice.service)

 Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/down.png

_static/up.png

_static/up-pressed.png

_themes/mozilla/README.html

 Navigation

 		
 index

 		
 modules |

 		Cornice 1.2.1 documentation »

Mozilla sphinx’s theme

This is a version of Mozilla’s sandstone theme, for the Sphinx documentation
engine. [http://sphinx.pocoo.org].

Here is how I use it

To use it, you need to clone it somewhere in your Sphinx’s architecture:

$ cd docs/source && mkdir _themes
$ git clone https://github.com/ametaireau/mozilla-sphinx-theme.git _themes/mozilla

and to configure Sphinx to use it. In your conf.py file:

html_theme_path = ['_themes']
html_theme = 'mozilla'

Take care and remove the pygments_style configuration, as it may not be of
the better taste with the mozilla’s theme.

Any contributions are of course welcome!

 © Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

_images/cornice.png
coolapp 1 documentation »

LS IISISI \Welcome to coolapp’s documentation!

>olapr
iont My Cool app provides a way to send cool quotes to the server !
Juote

" GET Service at /quote
This Page

Quick searc| POST

Service that maintains a quote.

Update the quote Makes sure the quote starts with a majuscule and ends with a dot

Response: json

GET

Returns the quote

Response: json

coolapp 1 documentation »

g Sphinx 1.1.

search.html

 Navigation

 		
 index

 		
 modules |

 		Cornice 1.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Mozilla Services.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

