
Cornice Documentation
Release 2.0.0

Mozilla Services

October 24, 2016

Contents

1 Show me some code! 3

2 Documentation content 5
2.1 QuickStart for people in a hurry . 5
2.2 Full tutorial . 6
2.3 Defining services . 11
2.4 Defining resources . 12
2.5 Validation features . 14
2.6 Schema validation . 19
2.7 Testing . 22
2.8 Exhaustive features list . 23
2.9 Cornice API . 25
2.10 Cornice internals . 28
2.11 Frequently Asked Questions (FAQ) . 29
2.12 Upgrading . 29

3 Contribution & Feedback 33

Python Module Index 35

i

ii

Cornice Documentation, Release 2.0.0

Cornice provides helpers to build & document REST-ish Web Services with Pyramid, with decent default behaviors.
It takes care of following the HTTP specification in an automated way where possible.

We designed and implemented cornice in a really simple way, so it is easy to use and you can get started in a matter of
minutes.

Contents 1

Cornice Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Show me some code!

A full Cornice WGSI application looks like this (this example is taken from the demoapp project):

from collections import defaultdict

from pyramid.httpexceptions import HTTPForbidden
from pyramid.view import view_config

from cornice import Service

user_info = Service(name='users',
path='/{username}/info',
description='Get and set user data.')

_USERS = defaultdict(dict)

@user_info.get()
def get_info(request):

"""Returns the public information about a **user**.

If the user does not exists, returns an empty dataset.
"""
username = request.matchdict['username']
return _USERS[username]

@user_info.post()
def set_info(request):

"""Set the public information for a **user**.

You have to be that user, and *authenticated*.

Returns *True* or *False*.
"""
username = request.authenticated_userid
if request.matchdict["username"] != username:

raise HTTPForbidden()
_USERS[username] = request.json_body
return {'success': True}

@view_config(route_name="whoami", permission="authenticated", renderer="json")

3

https://github.com/Cornices/examples

Cornice Documentation, Release 2.0.0

def whoami(request):
"""View returning the authenticated user's credentials."""
username = request.authenticated_userid
principals = request.effective_principals
return {"username": username, "principals": principals}

What Cornice will do for you here is:

• automatically raise a 405 if a DELETE or a PUT is called on /{username}/info

• provide a validation framework that will return a nice JSON structure in Bad Request 400 responses explaining
what’s wrong.

• provide an acceptable Content-Type whenever you send an HTTP “Accept” header to it, resulting in a 406 Not
Acceptable with the list of acceptable ones if it can’t answer.

Please follow up with Exhaustive features list to get the picture.

4 Chapter 1. Show me some code!

CHAPTER 2

Documentation content

2.1 QuickStart for people in a hurry

You are in a hurry, so we’ll assume you are familiar with Pip ;)

To use Cornice, install it:

$ pip install cornice

To start from scratch, you can use a Cookiecutter project template:

$ pip install cookiecutter
$ cookiecutter gh:Cornices/cookiecutter-cornice
...

The template creates a working Cornice application.

Note: If you’re familiar with Pyramid and just want to add cornice to an already existing project, you’ll just need to
include cornice in your project:

config.include("cornice")

You can then start poking at the views.py file.

For example, let’s define a service where you can GET and POST a value at /values/{value}, where value is an ascii
value representing the name of the value.

The views module can look like this:

from cornice import Service

_VALUES = {}

values = Service(name='foo',
path='/values/{value}',
description="Cornice Demo")

@values.get()
def get_value(request):

"""Returns the value.
"""
key = request.matchdict['value']
return _VALUES.get(key)

5

https://cookiecutter.readthedocs.io

Cornice Documentation, Release 2.0.0

@values.post()
def set_value(request):

"""Set the value.

Returns *True* or *False*.
"""
key = request.matchdict['value']
try:

json_body is JSON-decoded variant of the request body
_VALUES[key] = request.json_body

except ValueError:
return False

return True

Note: By default, Cornice uses a Json renderer.

Run your Cornice application with:

$ pserve project.ini --reload

Set a key-value using Curl:

$ curl -X POST http://localhost:6543/values/foo -d '{"a": 1}'

Check out what is stored in a foo value at http://localhost:6543/values/foo

2.2 Full tutorial

Let’s create a full working application with Cornice. We want to create a light messaging service.

You can find its whole source code at https://github.com/Cornices/examples/blob/master/messaging

Features:

• users can register to the service

• users can list all registered users

• users can send messages

• users can retrieve the latest messages

• messages have three fields: sender, content, color (red or black)

• adding a message is done through authentication

Limitations:

• there’s a single channel for all messages.

• if a user with the same name is already registered, he cannot register.

• all messages and users are kept in memory.

6 Chapter 2. Documentation content

http://localhost:6543/values/foo
https://github.com/Cornices/examples/blob/master/messaging

Cornice Documentation, Release 2.0.0

2.2.1 Design

The application provides two services:

• users, at /users: where you can list all users or register a new one

• messages, at /: where you can read the messages or add new ones

On the server, the data is kept in memory.

We’ll provide a single CLI client in Python, using Curses.

2.2.2 Setting up the development environment

Make sure you have virtualenv (see http://pypi.python.org/pypi/virtualenv).

Create a new directory and a virtualenv in it:

$ mkdir messaging
$ cd messaging
$ virtualenv --no-site-packages .

Once you have it, install Cornice in it with Pip:

$ bin/pip install cornice

We provide a Cookiecutter template you can use to create a new application:

$ bin/pip install cookiecutter
$ bin/cookiecutter gh:Cornices/cookiecutter-cornice
repo_name [myapp]: messaging
project_title [My Cornice application.]: Cornice tutorial

Once your application is generated, go there and call develop against it:

$ cd messaging
$../bin/python setup.py develop
...

The application can now be launched via embedded Pyramid pserve, it provides a default “Hello” service check:

$../bin/pserve messaging.ini
Starting server in PID 7618.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

Once the application is running, visit http://127.0.0.1:6543 in your browser and make sure you get:

{'Hello': 'World'}

You should also get the same results calling the URL via Curl:

$ curl -i http://0.0.0.0:6543/

This will result:

HTTP/1.1 200 OK
Content-Length: 18
Content-Type: application/json; charset=UTF-8
Date: Tue, 12 May 2015 13:23:32 GMT
Server: waitress

{"Hello": "World"}

2.2. Full tutorial 7

http://pypi.python.org/pypi/virtualenv
https://cookiecutter.readthedocs.io
http://127.0.0.1:6543

Cornice Documentation, Release 2.0.0

2.2.3 Defining the services

Let’s open the file in messaging/views.py, it contains all the Services:

from cornice import Service

hello = Service(name='hello', path='/', description="Simplest app")

@hello.get()
def get_info(request):

"""Returns Hello in JSON."""
return {'Hello': 'World'}

Users management

We’re going to get rid of the Hello service, and change this file in order to add our first service - the users management

from cornice import Service

_USERS = {}

users = Service(name='users', path='/users', description="User registration")

@users.get(validators=valid_token)
def get_users(request):

"""Returns a list of all users."""
return {'users': _USERS.keys()}

@users.post(validators=unique)
def create_user(request):

"""Adds a new user."""
user = request.validated['user']
_USERS[user['name']] = user['token']
return {'token': '%s-%s' % (user['name'], user['token'])}

@users.delete(validators=valid_token)
def delete_user(request):

"""Removes the user."""
name = request.validated['user']
del _USERS[name]
return {'Goodbye': name}

What we have here is 3 methods on /users:

• GET: returns the list of users names – the keys of _USERS

• POST: adds a new user and returns a unique token

• DELETE: removes the user.

Remarks:

• POST uses the unique validator to make sure that the user name is not already taken. That validator is also in
charge of generating a unique token associated with the user.

• GET users the valid_token to verify that a X-Messaging-Token header is provided in the request, with a valid
token. That also identifies the user.

• DELETE also identifies the user then removes it.

8 Chapter 2. Documentation content

Cornice Documentation, Release 2.0.0

Validators are filling the request.validated mapping, the service can then use.

import os
import binascii

from pyramid.httpexceptions import HTTPUnauthorized
from cornice import Service

def _create_token():
return binascii.b2a_hex(os.urandom(20))

def valid_token(request):
header = 'X-Messaging-Token'
htoken = request.headers.get(header)
if htoken is None:

raise HTTPUnauthorized()
try:

user, token = htoken.split('-', 1)
except ValueError:

raise HTTPUnauthorized()

valid = user in _USERS and _USERS[user] == token
if not valid:

raise HTTPUnauthorized()

request.validated['user'] = user

def unique(request):
name = request.body
if name in _USERS:

request.errors.add('url', 'name', 'This user exists!')
else:

user = {'name': name, 'token': _create_token()}
request.validated['user'] = user

When the validator finds errors, it adds them to the request.errors mapping, and that will return a 400 with the errors.

Let’s try our application so far with CURL:

$ curl http://localhost:6543/users
{"status": 401, "message": "Unauthorized"}

$ curl -X POST http://localhost:6543/users -d 'tarek'
{"token": "tarek-a15fa2ea620aac8aad3e1b97a64200ed77dc7524"}

$ curl http://localhost:6543/users -H "X-Messaging-Token:tarek-a15fa2ea620aac8aad3e1b97a64200ed77dc7524"
{"users": ["tarek"]}

$ curl -X DELETE http://localhost:6543/users -H "X-Messaging-Token:tarek-a15fa2ea620aac8aad3e1b97a64200ed77dc7524"
{"Goodbye": "tarek"}

Messages management

Now that we have users, let’s post and get messages. This is done via two very simple functions we’re adding in the
views.py file:

2.2. Full tutorial 9

Cornice Documentation, Release 2.0.0

_MESSAGES = []

messages = Service(name='messages', path='/', description="Messages")

@messages.get()
def get_messages(request):

"""Returns the 5 latest messages"""
return _MESSAGES[:5]

@messages.post(validators=(valid_token, valid_message))
def post_message(request):

"""Adds a message"""
_MESSAGES.insert(0, request.validated['message'])
return {'status': 'added'}

The first one simply returns the five first messages in a list, and the second one inserts a new message in the beginning
of the list.

The POST uses two validators:

• valid_token(): the function we used previously that makes sure the user is registered

• valid_message(): a function that looks at the message provided in the POST body, and puts it in the
validated dict.

Here’s the valid_message() function:

import json

def valid_message(request):
try:

message = json.loads(request.body)
except ValueError:

request.errors.add('body', 'message', 'Not valid JSON')
return

make sure we have the fields we want
if 'text' not in message:

request.errors.add('body', 'text', 'Missing text')
return

if 'color' in message and message['color'] not in ('red', 'black'):
request.errors.add('body', 'color', 'only red and black supported')

elif 'color' not in message:
message['color'] = 'black'

message['user'] = request.validated['user']
request.validated['message'] = message

This function extracts the json body, then checks that it contains a text key at least. It adds a color or use the one that
was provided, and reuse the user name provided by the previous validator with the token control.

2.2.4 The Client

A simple client to use against our service can do three things:

1. let the user register a name

10 Chapter 2. Documentation content

Cornice Documentation, Release 2.0.0

2. poll for the latest messages

3. let the user send a message !

Without going into great details, there’s a Python CLI against messaging that uses Curses.

See https://github.com/Cornices/examples/blob/master/messaging/messaging/client.py

2.3 Defining services

As mentioned in the QuickStart for people in a hurry and Full tutorial, services are defined this way:

from cornice import Service

flush = Service(name='flush',
description='Clear database content',
path='/__flush__')

@flush.post()
def flush_post(request):

return {"Done": True}

See cornice.service.Service for an exhaustive list of options.

2.3.1 Imperatively

Here is an example of how to define cornice services in an imperative way:

def flush_post(request):
return {"Done": True}

flush = Service(name='flush',
description='Clear database content',
path='/__flush__')

flush.add_view("POST", flush_post, **kwargs):

def includeme(config):
config.add_cornice_service(flush)
or
config.scan("PATH_TO_THIS_MODULE")

2.3.2 Custom error handler

from pyramid.httpexceptions import HTTPBadRequest

def my_error_handler(request):
first_error = request.errors[0]
body = {'description': first_error['description']}

response = HTTPBadRequest()
response.body = json.dumps(body).encode("utf-8")
response.content_type = 'application/json'
return response

2.3. Defining services 11

https://github.com/Cornices/examples/blob/master/messaging/messaging/client.py

Cornice Documentation, Release 2.0.0

flush = Service(name='flush',
path='/__flush__',
error_handler=my_error_handler)

2.3.3 CORS

When enabling CORS, Cornice will take automatically define OPTIONS views and appropriate headers validation.

flush = Service(name='flush',
description='Clear database content',
path='/__flush__',
cors_origins=('*',),
cors_max_age=3600)

There are also a number of parameters that are related to the support of CORS (Cross Origin Resource Sharing). You
can read the CORS specification at http://www.w3.org/TR/cors/ and see the exhaustive list of options
in Cornice.

See also:

https://blog.mozilla.org/services/2013/02/04/implementing-cross-origin-resource-sharing-cors-for-cornice/

2.3.4 Route factory support

When defining a service, you can provide a route factory, just like when defining a pyramid route.

For example:

flush = Service(name='flush', path='/__flush__', factory=user_factory)

2.4 Defining resources

Cornice is also able to handle REST “resources” for you. You can declare a class with some put, post, get etc. methods
(the HTTP verbs) and they will be registered as handlers for the appropriate methods / services.

Here is how you can register a resource:

from cornice.resource import resource

_USERS = {1: {'name': 'gawel'}, 2: {'name': 'tarek'}}

@resource(collection_path='/users', path='/users/{id}')
class User(object):

def __init__(self, request):
self.request = request

def collection_get(self):
return {'users': _USERS.keys()}

def get(self):
return _USERS.get(int(self.request.matchdict['id']))

def collection_post(self):
print(self.request.json_body)

12 Chapter 2. Documentation content

http://www.w3.org/TR/cors/
https://blog.mozilla.org/services/2013/02/04/implementing-cross-origin-resource-sharing-cors-for-cornice/
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#route-factories

Cornice Documentation, Release 2.0.0

_USERS[len(_USERS) + 1] = self.request.json_body
return True

2.4.1 Imperatively

Here is an example of how to define cornice resources in an imperative way:

from cornice import resource

class User(object):

def __init__(self, request):
self.request = request

def collection_get(self):
return {'users': _USERS.keys()}

def get(self):
return _USERS.get(int(self.request.matchdict['id']))

resource.add_view(User.get, renderer='json')
user_resource = resource.add_resource(User, collection_path='/users', path='/users/{id}')

def includeme(config):
config.add_cornice_resource(user_resource)
or
config.scan("PATH_TO_THIS_MODULE")

As you can see, you can define methods for the collection (it will use the path argument of the class decorator. When
defining collection_* methods, the path defined in the collection_path will be used.

2.4.2 Validators and filters

You also can register validators and filters that are defined in your @resource decorated class, like this:

from cornice.resource import resource, view

@resource(path='/users/{id}')
class User(object):

def __init__(self, request):
self.request = request

@view(validators=('validate_req',))
def get(self):

return the list of users

def validate_req(self, request):
validate the request

2.4.3 Registered routes

Cornice uses a default convention for the names of the routes it registers.

2.4. Defining resources 13

Cornice Documentation, Release 2.0.0

When defining resources, the pattern used is collection_<service_name> (it prepends collection_ to the
service name) for the collection service.

2.4.4 Route factory support

When defining a resource, you can provide a route factory, just like when defining a pyramid route. Cornice will then
pass its result into the __init__ of your service.

For example:

@resource(path='/users', factory=user_factory)
class User(object):

def __init__(self, request, context=None):
self.request = request
self.user = context

2.5 Validation features

Cornice provides a way to control the request before it’s passed to the code. A validator is a simple callable that gets
the request object and some keywords arguments, and fills request.errors in case the request isn’t valid.

Validators can also convert values and saves them so they can be reused by the code. This is done by filling the
request.validated dictionary.

Once the request had been sent to the view, you can filter the results using so called filters. This document describe
both concepts, and how to deal with them.

2.5.1 Disabling or adding filters/validators

Some validators and filters are activated by default, for all the services. In case you want to disable them, or if you

You can register a filter for all the services by tweaking the DEFAULT_FILTER parameter:

from cornice.validators import DEFAULT_FILTERS

def includeme(config):
DEFAULT_FILTERS.append(your_callable)

(this also works for validators)

You also can add or remove filters and validators for a particular service. To do that, you need to define its de-
fault_validators and default_filters class parameters.

2.5.2 Dealing with errors

When validating inputs using the different validation mechanisms (described in this document), Cornice can return
errors. In case it returns errors, it will do so in JSON by default.

The default returned JSON object is a dictionary of the following form:

{
'status': 'error',
'errors': errors

}

14 Chapter 2. Documentation content

http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#route-factories

Cornice Documentation, Release 2.0.0

With errors being a JSON dictionary with the keys “location”, “name” and “description”.

• location is the location of the error. It can be “querystring”, “header” or “body”

• name is the eventual name of the value that caused problems

• description is a description of the problem encountered.

You can override the default JSON error handler for a view with your own callable. The following function, for
instance, returns the error response with an XML document as its payload:

def xml_error(request):
errors = request.errors
lines = ['<errors>']
for error in errors:

lines.append('<error>'
'<location>%(location)s</location>'
'<type>%(name)s</type>'
'<message>%(description)s</message>'
'</error>' % error)

lines.append('</errors>')
return HTTPBadRequest(body=''.join(lines),

content_type='application/xml')

Configure your views by passing your handler as error_handler:

@service.post(validators=my_validator, error_handler=xml_error)
def post(request):

return {'OK': 1}

2.5.3 Validators

Cornice provide a simple mechanism to let you validate incoming requests before they are processed by your views.

Validation using custom callables

Let’s take an example: we want to make sure the incoming request has an X-Verified header. If not, we want the
server to return a 400:

from cornice import Service

foo = Service(name='foo', path='/foo')

def has_paid(request, **kwargs):
if not 'X-Verified' in request.headers:

request.errors.add('header', 'X-Verified', 'You need to provide a token')

@foo.get(validators=has_paid)
def get_value(request):

"""Returns the value.
"""
return 'Hello'

Notice that you can chain the validators by passing a sequence to the validators option.

2.5. Validation features 15

Cornice Documentation, Release 2.0.0

Changing the status code from validators

You also can change the status code returned from your validators. Here is an example of this:

def user_exists(request):
if not request.POST['userid'] in userids:

request.errors.add('body', 'userid', 'The user id does not exist')
request.errors.status = 404

Doing validation and filtering at class level

If you want to use class methods to do validation, you can do so by passing the klass parameter to the hook_view or
@method decorators, plus a string representing the name of the method you want to invoke on validation.

Take care, though, because this only works if the class you are using has an __init__ method which takes a request as
the first argument.

This means something like this:

class MyClass(object):
def __init__(self, request):

self.request = request

def validate_it(self, request, **kw):
pseudo-code validation logic
if whatever is wrong:

request.errors.add('body', description="Something is wrong")

@service.get(klass=MyClass, validators=('validate_it',))
def view(request):

return "ok"

2.5.4 Media type validation

There are two flavors of media/content type validations Cornice can apply to services:

• Content negotiation checks if Cornice is able to respond with an appropriate response body content type re-
quested by the client sending an Accept header. Otherwise it will croak with a 406 Not Acceptable.

• Request media type validation will match the Content-Type request header designating the request
body content type against a list of allowed content types. When failing on that, it will croak with a 415
Unsupported Media Type.

Content negotiation

Validate the Accept header in http requests against a defined or computed list of internet media types. Otherwise,
signal 406 Not Acceptable to the client.

Basics

By passing the accept argument to the service definition decorator, we define the media types we can generate http
response bodies for:

16 Chapter 2. Documentation content

Cornice Documentation, Release 2.0.0

@service.get(accept="text/html")
def foo(request):

return 'Foo'

When doing this, Cornice automatically deals with egress content negotiation for you.

If services don’t render one of the appropriate response body formats asked for by the requests HTTP Accept header,
Cornice will respond with a http status of 406 Not Acceptable.

The accept argument can either be a string or a list of accepted values made of internet media type(s) or a callable
returning the same.

Using callables

When a callable is specified, it is called before the request is passed to the destination function, with the request object
as an argument.

The callable obtains the request object and returns a list or a single scalar value of accepted media types:

def _accept(request):
interact with request if needed
return ("text/xml", "text/json")

@service.get(accept=_accept)
def foo(request):

return 'Foo'

See also:

https://developer.mozilla.org/en-US/docs/HTTP/Content_negotiation

Error responses

When requests are rejected, an appropriate error response is sent to the client using the configured error_handler. To
give the service consumer a hint about the valid internet media types to use for the Accept header, the error response
contains a list of allowed types.

When using the default json error_handler, the response might look like this:

{
'status': 'error',
'errors': [

{
'location': 'header',
'name': 'Accept',
'description': 'Accept header should be one of ["text/xml", "text/json"]'

}
]

}

Request media type

Validate the Content-Type header in http requests against a defined or computed list of internet media types.
Otherwise, signal 415 Unsupported Media Type to the client.

2.5. Validation features 17

https://developer.mozilla.org/en-US/docs/HTTP/Content_negotiation

Cornice Documentation, Release 2.0.0

Basics

By passing the content_type argument to the service definition decorator, we define the media types we accept as http
request bodies:

@service.post(content_type="application/json")
def foo(request):

return 'Foo'

All requests sending a different internet media type using the HTTP Content-Type header will be rejected with a http
status of 415 Unsupported Media Type.

The content_type argument can either be a string or a list of accepted values made of internet media type(s) or a
callable returning the same.

Using callables

When a callable is specified, it is called before the request is passed to the destination function, with the request object
as an argument.

The callable obtains the request object and returns a list or a single scalar value of accepted media types:

def _content_type(request):
interact with request if needed
return ("text/xml", "application/json")

@service.post(content_type=_content_type)
def foo(request):

return 'Foo'

The match is done against the plain internet media type string without additional parameters like charset=utf-8
or the like.

See also:

WebOb documentation: Return the content type, but leaving off any parameters

Error responses

When requests are rejected, an appropriate error response is sent to the client using the configured error_handler. To
give the service consumer a hint about the valid internet media types to use for the Content-Type header, the error
response contains a list of allowed types.

When using the default json error_handler, the response might look like this:

{
'status': 'error',
'errors': [

{
'location': 'header',
'name': 'Content-Type',
'description': 'Content-Type header should be one of ["text/xml", "application/json"]'

}
]

}

18 Chapter 2. Documentation content

http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.content_type

Cornice Documentation, Release 2.0.0

2.5.5 Managing ACLs

You can also specify a way to deal with ACLs: pass in a function that takes a request and returns an ACL, and that
ACL will be applied to all views in the service:

foo = Service(name='foo', path='/foo', acl=_check_acls)

2.5.6 Filters

Cornice can also filter the response returned by your views. This can be useful if you want to add some behaviour
once a response has been issued.

Here is how to define a validator for a service:

foo = Service(name='foo', path='/foo', filters=your_callable)

You can just add the filter for a specific method:

@foo.get(filters=your_callable)
def foo_get(request):

"""some description of the validator for documentation reasons"""
pass

In case you would like to register a filter for all the services but one, you can use the exclude parameter. It works either
on services or on methods:

@foo.get(exclude=your_callable)

2.6 Schema validation

Validating requests data using a schema is a powerful pattern.

As you would do for a database table, you define some fields and their type, and make sure that incoming requests
comply.

There are many schema libraries in the Python ecosystem you can use. The most known ones are Colander & formen-
code.

You can do schema validation using either those libraries or either custom code.

Using a schema is done in 2 steps:

1/ linking a schema to your service definition 2/ implement a validator that uses the schema to verify the request

Here’s a dummy example:

def my_validator(request, **kwargs):
schema = kwargs['schema']
do something with the schema

schema = {'id': int, 'name': str}

@service.post(schema=schema, validators=(my_validator,))
def post(request):

return {'OK': 1}

Cornice will call my_validator with the incoming request, and will provide the schema in the keywords.

2.6. Schema validation 19

Cornice Documentation, Release 2.0.0

2.6.1 Using Colander

Colander (http://docs.pylonsproject.org/projects/colander/en/latest/) is a validation framework from the Pylons project
that can be used with Cornice’s validation hook to control a request and deserialize its content into objects.

Cornice provides a helper to ease Colander integration.

To describe a schema, using Colander and Cornice, here is how you can do:

import colander

from cornice import Service
from cornice.validators import colander_body_validator

class SignupSchema(colander.MappingSchema):
username = colander.SchemaNode(colander.String())

@signup.post(schema=SignupSchema, validators=(colander_body_validator,))
def signup_post(request):

username = request.validated['username']
return {'success': True}

Dynamic schemas

If you want to do specific things with the schema at validation step, like having a schema per request method, you can
provide whatever you want as the schema key and built a custom validator.

Example:

def dynamic_schema(request):
if request.method == 'POST':

schema = foo_schema
elif request.method == 'PUT':

schema = bar_schema
return schema

def my_validator(request, **kwargs):
kwargs['schema'] = dynamic_schema(request)
return colander_body_validator(request, **kwargs)

@service.post(validators=(my_validator,))
def post(request):

return request.validated

Multiple request attributes

If you have complex use-cases where data has to be validated accross several locations of the request (like querystring,
body etc.), Cornice provides a validator that takes an additionnal level of mapping for body, querystring, path
or headers instead of the former location attribute on schema fields.

The request.validated hences reflects this additional level.

from cornice.validators import colander_validator

class Querystring(colander.MappingSchema):

20 Chapter 2. Documentation content

http://docs.pylonsproject.org/projects/colander/en/latest/

Cornice Documentation, Release 2.0.0

referrer = colander.SchemaNode(colander.String(), missing=colander.drop)

class Payload(colander.MappingSchema):
username = colander.SchemaNode(colander.String())

class SignupSchema(colander.MappingSchema):
body = Payload()
querystring = Querystring()

signup = cornice.Service()

@signup.post(schema=SignupSchema, validators=(colander_validator,))
def signup_post(request):

username = request.validated['body']['username']
referrer = request.validated['querystring']['referrer']
return {'success': True}

This allows to have validation at the schema level that validates data from several places on the request:

class SignupSchema(colander.MappingSchema):
body = Payload()
querystring = Querystring()

def deserialize(self, cstruct=colander.null):
appstruct = super(SignupSchema, self).deserialize(cstruct)
username = appstruct['body']['username']
referrer = appstruct['querystring'].get('referrer')
if username == referred:

self.raise_invalid('Referrer cannot be the same as username')
return appstruct

Cornice provides built-in support for JSON and HTML forms (application/x-www-form-urlencoded) in-
put validation using the provided colander validators.

If you need to validate other input formats, such as XML, you need to implement your own deserializer and pass it to
the service.

The general pattern in this case is:

from cornice.validators import colander_body_validator

def my_deserializer(request):
return extract_data_somehow(request)

@service.post(schema=MySchema,
deserializer=my_deserializer,
validators=(colander_body_validator,))

def post(request):
return {'OK': 1}

2.6.2 Using formencode

FormEncode (http://www.formencode.org/en/latest/index.html) is yet another validation system that can be used with
Cornice.

For example, if you want to make sure the optional query option max is an integer, and convert it, you can use
FormEncode in a Cornice validator like this:

2.6. Schema validation 21

http://www.formencode.org/en/latest/index.html

Cornice Documentation, Release 2.0.0

from formencode import validators

from cornice import Service
from cornice.validators import extract_cstruct

foo = Service(name='foo', path='/foo')

def form_validator(request, **kwargs):
data = extract_cstruct(request)
validator = validators.Int()
try:

max = data['querystring'].get('max')
request.validated['max'] = validator.to_python(max)

except formencode.Invalid, e:
request.errors.add('querystring', 'max', e.message)

@foo.get(validators=(form_validator,))
def get_value(request):

"""Returns the value.
"""
return {'posted': request.validated}

2.6.3 See also

Several libraries exist in the wild to validate data in Python and that can easily be plugged with Cornice.

• JSONSchema (https://pypi.python.org/pypi/jsonschema)

• Cerberus (https://pypi.python.org/pypi/Cerberus)

• marshmallow (https://pypi.python.org/pypi/marshmallow)

2.7 Testing

2.7.1 Running tests

To run all tests in all Python environments configured in tox.ini, just setup tox and run it inside the toplevel
project directory:

tox

To run a single test inside a specific Python environment, do e.g.:

tox -e py27 tests/test_validation.py:TestServiceDefinition.test_content_type_missing

or:

tox -e py27 tests.test_validation:TestServiceDefinition.test_content_type_missing

2.7.2 Testing cornice services

Testing is nice and useful. Some folks even said it helped saving kittens. And childs. Here is how you can test your
Cornice’s applications.

Let’s suppose you have this service definition:

22 Chapter 2. Documentation content

https://pypi.python.org/pypi/jsonschema
https://pypi.python.org/pypi/Cerberus
https://pypi.python.org/pypi/marshmallow

Cornice Documentation, Release 2.0.0

from pyramid.config import Configurator

from cornice import Service

service = Service(name="service", path="/service")

def has_payed(request, **kwargs):
if not 'paid' in request.GET:

request.errors.add('body', 'paid', 'You must pay!')

@service.get(validators=(has_payed,))
def get1(request):

return {"test": "succeeded"}

def includeme(config):
config.include("cornice")
config.scan("absolute.path.to.this.service")

def main(global_config, **settings):
config = Configurator(settings={})
config.include(includeme)
return config.make_wsgi_app()

We have done three things here:

• setup a service, using the Service class and define our services with it

• register the app and cornice to pyramid in the includeme function

• define a main function to be used in tests

To test this service, we will use webtest, and the TestApp class:

from webtest import TestApp
import unittest

from yourapp import main

class TestYourApp(unittest.TestCase):

def test_case(self):
app = TestApp(main({}))
app.get('/service', status=400)

2.8 Exhaustive features list

As you may have noticed, Cornice does some validation for you. This document aims at documenting all those
behaviours so you are not surprised if Cornice does it for you without noticing.

2.8. Exhaustive features list 23

Cornice Documentation, Release 2.0.0

2.8.1 Validation

Errors

When validating contents, Cornice will automatically throw a 400 error if the data is invalid. Along with the 400 error,
the body will contain a JSON dict which can be parsed to know more about the problems encountered.

Method not allowed

In cornice, one path equals one service. If you call a path with the wrong method, a 405 Method Not Allowed error
will be thrown (and not a 404), like specified in the HTTP specification.

Authorization

Authorization can be done using the acl parameter. If the authentication or the authorization fails at this stage, a 401
or 403 error is returned, depending on the cases.

Content negotiation

This relates to response body internet media types aka. egress content types.

Each method can specify a list of internet media types it can respond with. Per default, text/html is assumed. In the
case the client requests an invalid media type via Accept header, cornice will return a 406 Not Acceptable with an error
message containing the list of available response content types for the particular URI and method.

Request media type

This relates to request body internet media types aka. ingress content types.

Each method can specify a list of internet media types it accepts as request body format. Per default, any media
type is allowed. In the case the client sends a request with an invalid Content-Type header, cornice will return a 415
Unsupported Media Type with an error message containing the list of available request content types for the particular
URI and method.

Warning when returning JSON lists

JSON lists are subject to security threats, as defined in this document. In case you return a javascript list, a warning
will be thrown. It will not however prevent you from returning the array.

This behaviour can be disabled if needed (it can be removed from the list of default filters)

2.8.2 URL prefix

It is possible to set a prefix for all your routes. For instance, if you want to prefix all your URIs by /v1/.

config.route_prefix = 'v2'
config.include("cornice")

24 Chapter 2. Documentation content

http://haacked.com/archive/2009/06/25/json-hijacking.aspx

Cornice Documentation, Release 2.0.0

2.8.3 CORS

Cornice can add CORS (Cross Origin Resource Sharing) support to your services. When enabled, it will define the
appropriate views (OPTIONS methods) and validators (headers etc.).

See more details...

2.9 Cornice API

2.9.1 Service

This document describes the methods proposed by cornice. It is automatically generated from the source code.

class cornice.service.Service(name, path, description=None, cors_policy=None, depth=1, **kw)
Contains a service definition (in the definition attribute).

A service is composed of a path and many potential methods, associated with context.

All the class attributes defined in this class or in children are considered default values.

Parameters

• name – The name of the service. Should be unique among all the services.

• path – The path the service is available at. Should also be unique.

• renderer – The renderer that should be used by this service. Default value is ‘simplejson’.

• description – The description of what the webservice does. This is primarily intended
for documentation purposes.

• validators – A list of callables to pass the request into before passing it to the associated
view.

• filters – A list of callables to pass the response into before returning it to the client.

• accept – A list of Accept header values accepted for this service (or method if over-
written when defining a method). It can also be a callable, in which case the values will be
discovered at runtime. If a callable is passed, it should be able to take the request as a first
argument.

• content_type – A list of Content-Type header values accepted for this service (or
method if overwritten when defining a method). It can also be a callable, in which case the
values will be discovered at runtime. If a callable is passed, it should be able to take the
request as a first argument.

• factory – A factory returning callables which return boolean values. The callables take
the request as their first argument and return boolean values. This param is exclusive with
the ‘acl’ one.

• acl – A callable defining the ACL (returns true or false, function of the given request).
Exclusive with the ‘factory’ option.

• permission – As for pyramid.config.Configurator.add_view(). Note:
acl and permission can also be applied to instance method decorators such as get() and
put().

• klass – The class to use when resolving views (if they are not callables)

• error_handler – A callable which is used to render responses following validation
failures. Defaults to ‘json_error’.

2.9. Cornice API 25

Cornice Documentation, Release 2.0.0

• traverse – A traversal pattern that will be passed on route declaration and that will be
used as the traversal path.

There are also a number of parameters that are related to the support of CORS (Cross Origin Resource Sharing).
You can read the CORS specification at http://www.w3.org/TR/cors/

Parameters

• cors_enabled – To use if you especially want to disable CORS support for a particular
service / method.

• cors_origins – The list of origins for CORS. You can use wildcards here if needed, e.g.
(‘list’, ‘of’, ‘*.domain’).

• cors_headers – The list of headers supported for the services.

• cors_credentials – Should the client send credential information (False by default).

• cors_max_age – Indicates how long the results of a preflight request can be cached in a
preflight result cache.

• cors_expose_all_headers – If set to True, all the headers will be exposed and con-
sidered valid ones (Default: True). If set to False, all the headers need be explicitly men-
tioned with the cors_headers parameter.

• cors_policy – It may be easier to have an external object containing all the policy in-
formation related to CORS, e.g:

>>> cors_policy = {'origins': ('*',), 'max_age': 42,
... 'credentials': True}

You can pass a dict here and all the values will be unpacked and considered rather than the
parameters starting by cors_ here.

See https://pyramid.readthedocs.io/en/1.0-branch/glossary.html#term-acl for more information about ACLs.

Service cornice instances also have methods get(), post(), put(), options() and delete() are
decorators that can be used to decorate views.

cornice.service.decorate_view(view, args, method)
Decorate a given view with cornice niceties.

This function returns a function with the same signature than the one you give as :param view:

Parameters

• view – the view to decorate

• args – the args to use for the decoration

• method – the HTTP method

2.9.2 Resource

cornice.resource.resource(depth=2, **kw)
Class decorator to declare resources.

All the methods of this class named by the name of HTTP resources will be used as such. You can also
prefix them by "collection_" and they will be treated as HTTP methods for the given collection path
(collection_path), if any.

Parameters

26 Chapter 2. Documentation content

http://www.w3.org/TR/cors/
https://pyramid.readthedocs.io/en/1.0-branch/glossary.html#term-acl

Cornice Documentation, Release 2.0.0

• depth – Witch frame should be looked in default 2.

• kw – Keyword arguments configuring the resource.

Here is an example:

@resource(collection_path='/users', path='/users/{id}')

cornice.resource.view(**kw)
Method decorator to store view arguments when defining a resource with the @resource class decorator

Parameters kw – Keyword arguments configuring the view.

cornice.resource.add_view(func, **kw)
Method to store view arguments when defining a resource with the add_resource class method

Parameters

• func – The func to hook to

• kw – Keyword arguments configuring the view.

Example:

class User(object):

def __init__(self, request):
self.request = request

def collection_get(self):
return {'users': _USERS.keys()}

def get(self):
return _USERS.get(int(self.request.matchdict['id']))

add_view(User.get, renderer='json')
add_resource(User, collection_path='/users', path='/users/{id}')

cornice.resource.add_resource(klass, depth=1, **kw)
Function to declare resources of a Class.

All the methods of this class named by the name of HTTP resources will be used as such. You can also
prefix them by "collection_" and they will be treated as HTTP methods for the given collection path
(collection_path), if any.

Parameters

• klass – The class (resource) on witch to register the service.

• depth – Witch frame should be looked in default 2.

• kw – Keyword arguments configuring the resource.

Here is an example:

class User(object):
pass

add_resource(User, collection_path='/users', path='/users/{id}')

2.9. Cornice API 27

Cornice Documentation, Release 2.0.0

2.9.3 Errors

class cornice.errors.Errors(status=400)
Holds Request errors

2.10 Cornice internals

Internally, Cornice doesn’t do a lot of magic. The logic is mainly split in two different locations: the services.py
module and the pyramid_hook.py module.

That’s important to understand what they are doing in order to add new features or tweak the existing ones.

2.10.1 The Service class

The cornice.service.Service class is a container for all the definition information for a particu-
lar service. That’s what you use when you use the Cornice decorators for instance, by doing things like
@myservice.get(**kwargs). Under the hood, all the information you’re passing to the service is stored in
this class. Into other things you will find there:

• the name of the registered service.

• the path the service is available at.

• the description of the service, if any.

• the defined_methods for the current service. This is a list of strings. It shouldn’t contain more than one time the
same item.

That’s for the basic things. The last interesting part is what we call the “definitions”. When you add a view to the
service with the add_view method, it populates the definitions list, like this:

self.definitions.append((method, view, args))

where method is the HTTP verb, view is the python callable and args are the arguments that are registered with this
definition. It doesn’t look this important, but this last argument is actually the most important one. It is a python dict
containing the filters, validators, content types etc.

There is one thing I didn’t talk about yet: how we are getting the arguments from the service class. There is a handy
get_arguments method, which returns the arguments from another list of given arguments. The goal is to fallback on
instance-level arguments or class-level arguments if no arguments are provided at the add_view level. For instance,
let’s say I have a default service which renders to XML. I set its renderer in the class to “XML”.

When I register the information with cornice.service.Service.add_view(), renderer=’XML’ will be
added automatically in the kwargs dict.

2.10.2 Registering the definitions into the Pyramid routing system

Okay, so once you added the services definition using the Service class, you might need to actually register the right
routes into pyramid. The cornice.pyramidhook module takes care of this for you.

What it does is that it checks all the services registered and call some functions of the pyramid framework on your
behalf.

What’s interesting here is that this mechanism is not really tied to pyramid. for instance, we are doing the same thing
in cornice_sphinx to generate the documentation: use the APIs that are exposed in the Service class and do something
from it.

28 Chapter 2. Documentation content

https://github.com/Cornices/cornice.ext.sphinx

Cornice Documentation, Release 2.0.0

To keep close to the flexibility of Pyramid’s routing system, a traverse argument can be provided on service
creation. It will be passed to the route declaration. This way you can combine URL Dispatch and traversal to build an
hybrid application.

2.11 Frequently Asked Questions (FAQ)

Here is a list of frequently asked questions related to Cornice.

2.11.1 Cornice registers exception handlers, how do I deal with it?

Cornice registers its own exception handlers so it’s able to behave the right way in some edge cases (it’s mostly done
for CORS support).

Sometimes, you will need to register your own exception handlers, and Cornice might get on your way.

You can disable the exception handling by using the handle_exceptions setting in your configuration file or in your
main app:

config.add_settings(handle_exceptions=False)

2.12 Upgrading

2.12.1 1.X to 2.X

Project template

We now rely on Cookiecutter instead of the deprecated Pyramid scaffolding feature:

$ cookiecutter gh:Cornices/cookiecutter-cornice

Sphinx documentation

The Sphinx extension now lives in a separate package, that must be installed:

pip install cornice_sphinx

Before in your docs/conf.py:

Now:

Validators

Validators now receive the kwargs of the related service definition.

Before:

def has_payed(request):
if 'paid' not in request.GET:

request.errors.add('body', 'paid', 'You must pay!')

Now:

2.11. Frequently Asked Questions (FAQ) 29

https://cookiecutter.readthedocs.io

Cornice Documentation, Release 2.0.0

def has_payed(request, **kwargs):
free_access = kwargs.get('free_access')
if not free_access and 'paid' not in request.GET:

request.errors.add('body', 'paid', 'You must pay!')

Colander validation

Colander schema validation now requires an explicit validator on the service view definition.

Before:

class SignupSchema(colander.MappingSchema):
username = colander.SchemaNode(colander.String())

@signup.post(schema=SignupSchema)
def signup_post(request):

username = request.validated['username']
return {'success': True}

Now:

from cornice.validators import colander_body_validator

class SignupSchema(colander.MappingSchema):
username = colander.SchemaNode(colander.String())

@signup.post(schema=SignupSchema, validators=(colander_body_validator,))
def signup_postt(request):

username = request.validated['username']
return {'success': True}

This makes declarations a bit more verbose, but decorrelates Cornice from Colander. Now any validation library can
be used.

Complex Colander validation

If you have complex use-cases where data has to be validated accross several locations of the request (like querystring,
body etc.), Cornice provides a validator that takes an additionnal level of mapping for body, querystring, path
or headers instead of the former location attribute on schema fields.

The request.validated hences reflects this additional level.

Before:

class SignupSchema(colander.MappingSchema):
username = colander.SchemaNode(colander.String(), location='body')
referrer = colander.SchemaNode(colander.String(), location='querystring',

missing=colander.drop)

@signup.post(schema=SignupSchema)
def signup_post(request):

username = request.validated['username']
referrer = request.validated['referrer']
return {'success': True}

Now:

30 Chapter 2. Documentation content

Cornice Documentation, Release 2.0.0

from cornice.validators import colander_validator

class Querystring(colander.MappingSchema):
referrer = colander.SchemaNode(colander.String(), missing=colander.drop)

class Payload(colander.MappingSchema):
username = colander.SchemaNode(colander.String())

class SignupSchema(colander.MappingSchema):
body = Payload()
querystring = Querystring()

signup = cornice.Service()

@signup.post(schema=SignupSchema, validators=(colander_validator,))
def signup_post(request):

username = request.validated['body']['username']
referrer = request.validated['querystring']['referrer']
return {'success': True}

This now allows to have validation at the schema level that validates data from several locations:

class SignupSchema(colander.MappingSchema):
body = Payload()
querystring = Querystring()

def deserialize(self, cstruct=colander.null):
appstruct = super(SignupSchema, self).deserialize(cstruct)
username = appstruct['body']['username']
referrer = appstruct['querystring'].get('referrer')
if username == referred:

self.raise_invalid('Referrer cannot be the same as username')
return appstruct

Error handler

• The error_handler callback of services now receives a request object instead of errors.

Before:

def xml_error(errors):
request = errors.request
...

Now:

def xml_error(request):
errors = request.errors
...

Deserializers

The support of config.add_deserializer() and config.registry.cornice_deserializers was
dropped.

2.12. Upgrading 31

Cornice Documentation, Release 2.0.0

Services schemas introspection

The schema argument of services is now treated as service kwarg. The service.schemas_for() method was
dropped as well as the service.schemas property.

Before:

schema = service.schemas_for(method="POST")

Now:

schema = [kwargs['schema'] for method, view, kwargs in service.definitions
if method == "POST"][0]

32 Chapter 2. Documentation content

CHAPTER 3

Contribution & Feedback

Cornice is a project initiated at Mozilla Services, where we build Web Services for features like Firefox Sync. All of
what we do is built with open source, and this is one brick of our stack.

We welcome Contributors and Feedback!

• Developers Mailing List: https://mail.mozilla.org/listinfo/services-dev

• Repository: https://github.com/mozilla-services/cornice

33

https://mail.mozilla.org/listinfo/services-dev
https://github.com/mozilla-services/cornice

Cornice Documentation, Release 2.0.0

34 Chapter 3. Contribution & Feedback

Python Module Index

c
cornice.service, 25

35

Cornice Documentation, Release 2.0.0

36 Python Module Index

Index

A
add_resource() (in module cornice.resource), 27
add_view() (in module cornice.resource), 27

C
cornice.service (module), 25

D
decorate_view() (in module cornice.service), 26

E
Errors (class in cornice.errors), 28

R
resource() (in module cornice.resource), 26

S
Service (class in cornice.service), 25

V
view() (in module cornice.resource), 27

37

	Show me some code!
	Documentation content
	QuickStart for people in a hurry
	Full tutorial
	Defining services
	Defining resources
	Validation features
	Schema validation
	Testing
	Exhaustive features list
	Cornice API
	Cornice internals
	Frequently Asked Questions (FAQ)
	Upgrading

	Contribution & Feedback
	Python Module Index

